

Skip to main content

Thoughts on Product Management

Lessons after 20+ years in the product trenches

Search

Search This Blog

Build simple PDF search engine in Ruby (Part 1)

November 11, 2009

I decided to build a simple Ruby search engine to search through PDFs.

The main application was that I wanted a quick way to search through songsheets on my church's Web site. I didn't want to repeatedly look through different PDFs to find the song I was interested in.

I was mostly inspired by this example of someone who had written a search engine in 200 lines of Ruby. I knew my program would be much easier because it didn't need to support any crawling; just indexing and querying.

The first challenge was to find a Ruby library that would parse PDFs. I ultimately settled on this because it was easy to work with. It's basically just a Ruby wrapper around pdftohtml that provides high level access to the text objects of a PDF. I don't care about layout, graphics, etc. so this was sufficient.

The PDF code mostly works without problems but it assumes that the directory for pdftohtml exists in $PATH. I used MacPorts to compile pdftohtml so it was stored in /opt/local/bin, and TextMate didn't recognize /opt/local/bin in my $PATH. I did some research and discovered this page that says I need to create a file called ~/.MacOSX/environment.plist and explicitly set the PATH variable:

{
 PATH = "/opt/local/bin:/opt/local/sbin:/opt/local/bin:/opt/local/sbin:/opt/local/bin:/opt/local/sbin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11/bin";
}

The actual indexing code is straightforward. It's mostly based on the saush engine article. Rather than rehash the site, the index is based on an inverted index. The search engine saves the inverted index in a SQLite database using the DataMapper library.

There are three main "tables": Song, Word, and Location. Song and Word have a many-to-many relationship, where a song has multiple words and a word is used in multiple songs. Location is the mapping table between Song and Word.

Here is the indexing library. Note that it uses DataMapper so it relies on the dm-core and dm-timestamps libraries, as well as stemmer and pdf-struct (the PDF library mentioned earlier). The saush search engine uses dm-more but I couldn't get this to be properly included. But dm-timestamps was all that was needed out of dm-more.

Here is the code for index.rb:

require 'rubygems'
require 'dm-core'
require 'dm-timestamps'
require 'dm-aggregates'
require 'stemmer'
require 'pdf-struct'

DBLOC = 'songdb.sqlite3'

DataMapper.setup(:default, 'sqlite3:///' + DBLOC)

class String
 def words
 words = self.gsub(/[^0-9A-Za-z_\s]/,"").split # self is the string; no need for parms
 # Get rid of all non-word and non-space characters and split on spaces
 d = []
 words.each { |word| d << word.downcase.stem unless word =~ /^[A-G]+[bgm]?$/ } # Ignore guitar chords
 return d
 end
end

class Song
 include DataMapper::Resource

 property :id, Serial
 property :title, String, :length => 255
 has n, :locations
 has n, :words, :through => :locations
 property :created_at, DateTime
 property :updated_at, DateTime

 def self.find(title)
 song = first(:title => title)
 song = new(:title => title) if song.nil?
 return song
 end

 def refresh
 update({:updated_at => DateTime.parse(Time.now.to_s)})
 end
end

class Word
 include DataMapper::Resource

 property :id, Serial
 property :stem, String
 has n, :locations
 has n, :songs, :through => :locations

 def self.find(word)
 wrd = first(:stem => word)
 wrd = new(:stem => word) if wrd.nil?
 return wrd
 end
end

class Location
 include DataMapper::Resource

 property :id, Serial
 property :position, Integer

 belongs_to :word
 belongs_to :song
end

DataMapper.auto_migrate! if ARGV[0] == 'reset' # This issues the necessary Create statements and wipes out existing database

The actual indexing code goes through each PDF. It extracts the words from the song (except the guitar chords) and creates a space-delimited string of words. Then it goes through the string, creating the Word or Song objects if necessary and creating the many-to-many relationship between Word and Song.

Code for pdfindex.rb:

#!/usr/bin/ruby

require 'rubygems'
require 'fileutils'
require 'logger'
require 'index'

SONGDIR = '/Users/rpark/ruby/pdfsearch/'
LOGFILE = 'songsearch.log'
LASTRUN = 'lastrun'

class SongSearch
 def process(file) # returns string of all stemmed words in song
 array = []
 document = PDF::Extractor.open(file)
 document.elements.each do |element|
 array << element.content
 end
 return array.join(" ").words # .join creates a string separated by delimiter
 rescue => e
 #puts "Exception in parsing #{e}"
 @log.debug "Exception in parsing #{e}"
 nil
 end

 def index(words, filename)
 if words.nil?
 #puts "ERROR parsing #{filename}"
 @log.debug "ERROR parsing #{filename}"
 return
 end
 print "Indexing #{filename}: "
 logmsg = "Indexing #{filename}: "
 song = Song.find(filename)
 unless song.new?
 print "Overwriting... "
 logmsg += "Overwriting... "
 song.refresh
 song.locations.destroy!
 end
 words.each_with_index { |word, index|
 loc = Location.new(:position => index)
 loc.word, loc.song = Word.find(word), song
 loc.save
 }
 puts "#{words.size.to_i} words"
 @log.debug logmsg + "#{words.size.to_i} words"
 end

 def cycle
 lastrun = File.mtime(LASTRUN)
 @log = Logger.new(LOGFILE, 'monthly')
 Dir.glob(SONGDIR + "*.pdf") {
 |file|
 index(process(file), file) if File.mtime(file) > lastrun # Only process newer songs
 }
 FileUtils.touch LASTRUN
 end
end

search = SongSearch.new
search.cycle

The digger code actually searches through the song database and searches for songs. A song is searched for by passing a string to Digger.search(). It returns a list of songs that the string can be found in, along with a score.

Code for digger.rb:

#!/usr/bin/ruby

require 'index'

class Digger
 SEARCH_LIMIT = 19

 def search(for_text)
 @search_params = for_text.words
 wrds = []
 @search_params.each { |param| wrds << "stem = '#{param}'" }
 word_sql = "select * from words where #{wrds.join(" or ")}"
 @search_words = repository(:default).adapter.query(word_sql)
 tables, joins, ids = [], [], []
 @search_words.each_with_index { |w, index|
 tables << "locations loc#{index}"
 joins << "loc#{index}.song_id = loc#{index+1}.song_id"
 ids << "loc#{index}.word_id = #{w.id}"
 }
 joins.pop
 @common_select = "from #{tables.join(', ')} where #{(joins + ids).join(' and ')} group by loc0.song_id"
 rank[0..SEARCH_LIMIT]
 end

 def rank
 merge_rankings(frequency_ranking, location_ranking, distance_ranking)
 end

 def merge_rankings(*rankings)
 r = {}
 rankings.each { |ranking| r.merge!(ranking) { |key, oldval, newval| oldval + newval} }
 r.sort {|a,b| b[1] a[1]}
 end

 def frequency_ranking
 freq_sql= "select loc0.song_id, count(loc0.song_id) as count #{@common_select} order by count desc"
 list = repository(:default).adapter.query(freq_sql)
 rank = {}
 list.size.times { |i| rank[list[i].song_id] = list[i].count.to_f/list[0].count.to_f }
#puts freq_sql
#puts list
#puts rank.inspect
 return rank
 end

 def location_ranking
 total = []
 @search_words.each_with_index { |w, index| total << "loc#{index}.position + 1" }
 loc_sql = "select loc0.song_id, (#{total.join(' + ')}) as total #{@common_select} order by total asc"
 list = repository(:default).adapter.query(loc_sql)
 rank = {}
 list.size.times { |i| rank[list[i].song_id] = list[0].total.to_f/list[i].total.to_f }
#puts loc_sql
#puts list
#puts rank.inspect
 return rank
 end

 def distance_ranking
 return {} if @search_words.size == 1
 dist, total = [], []
 @search_words.each_with_index { |w, index| total << "loc#{index}.position" }
 total.size.times { |index| dist << "abs(#{total[index]} - #{total[index + 1]})" unless index == total.size - 1 }
 dist_sql = "select loc0.song_id, (#{dist.join(' + ')}) as dist #{@common_select} order by dist asc"
 list = repository(:default).adapter.query(dist_sql)
 rank = Hash.new
 list.size.times { |i| rank[list[i].song_id] = list[0].dist.to_f/list[i].dist.to_f }
#puts dist_sql
#puts list
#puts rank.inspect
 return rank
 end
end

Note: the biggest disadvantage with this search method is that it doesn't show the search string in its context in the song. Rather than continue with this approach, my thinking is to use a search engine such as Solr to do the search, so I can show the search string within the song.

Share

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

Share

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

Comments

Post a Comment

Popular posts from this blog

Building a Hadoop cluster

May 16, 2011

I've recently had to build a Hadoop cluster for a class in information retrieval . My final project involved building a Hadoop cluster. Here are some of my notes on configuring the nodes in the cluster. These links on configuring a single node cluster and multi node cluster were the most helpful. I downloaded the latest Hadoop distribution then moved it into /hadoop. I had problems with this latest distribution (v.21) so I used v.20 instead. Here are the configuration files I changed: core-site.xml: fs.default.name hdfs://master:9000 hadoop.tmp.dir /hadoop/tmp A base for other temporary directories. hadoop-env.sh: # Variables required by Mahout export HADOOP_HOME=/hadoop export HADOOP_CONF_DIR=/hadoop/conf export MAHOUT_HOME=/Users/rpark/mahout PATH=/hadoop/bin:/Users/rpark/mahout/bin:$PATH # The java implementation to use. Required. export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Home hdfs-site

Share

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

1 comment

Read more

Working with VMware vShield REST API in perl

May 16, 2011

Here is an overview of how to use perl code to work with VMware's vShield API. vShield App and Edge are two security products offered by VMware. vShield Edge has a broad range of functionality such as firewall, VPN, load balancing, NAT, and DHCP. vShield App is a NIC-level firewall for virtual machines. We'll focus today on how to use the API to programatically make firewall rule changes. Here are some of the things you can do with the API: List the current firewall ruleset Add new rules Get a list of past firewall revisions Revert back to a previous ruleset revision vShield API documentation is available here . Before we get into the API itself, let's look at what the firewall ruleset looks like. It's formatted as XML: 1.1.1.1/32 10.1.1.1/32 datacenter-2 ANY 1023 High 1 ANY < Application type="UNICAST">LDAP over SSL 636 TCP ALLOW deny 1020 Low 3 ANY IMAP 143 TCP < Action>ALLOW false Here are so

Share

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

Post a Comment

Read more

The #1 Mistake Made by Product People at All Levels

January 03, 2022

In my 20+ year career in product management for B2B enterprise companies, I have seen product managers at every level make a certain kind of mistake. It is so easy to make that I occasionally make it myself when I'm not careful. What is this mistake? It is to spend too much time on tasks and deliverables that are not core to the product function, which is to to determine and define products to be built. If you keep falling into this trap then ultimately you can't be effective at your job and your company won't sell compelling products. Your primary job as a product manager is to figure out what your market and customers need and make sure it gets built. If you aren't careful, you can spend all of your time performing tasks in support of products such as sales enablement, customer success, product marketing, and pre-sales. How Do You Know This Is Happening? It is easy to fall into this trap for many reasons. Here are a few scenarios that come to mind: Product Marketing

Share

	

Get link

	

Facebook

	

Twitter

	

Pinterest

	

Email

	

Other Apps

1 comment

Read more

About Me

	

Richard Park

	

I'm Chief Product Officer at Fugue, a cloud security company.

You can see my LinkedIn profile here.

Visit profile

Archive

	

2022
1

	

January
1

	

2014
1

	

November
1

	

2013
1

	

February
1

	

2011
2

	

May
2

	

2010
7

	

October
4

	

July
1

	

June
1

	

April
1

	

2009
4

	

November
3

	
Merits of Customer Development

	
Displaying Ruby code on a blog

	
Build simple PDF search engine in Ruby (Part 1)

	

October
1

Show more
Show less

Report Abuse

Powered by Blogger

